X.-Table shewing the Weight or Pressure which a cylindrical wroughtiron Bolt will sustain when supported at the ends, and bonded in the middle of its Length. By Captain J. Thomson, Engineers.

in	Dm. Ins.	$\overline{\mathrm{Dm}}$ Ins.	Dm.	$\mathrm{Dm} \text {. }$ In.	$\begin{aligned} & \mathrm{Dm} . \\ & \mathrm{Ins} . \end{aligned}$	Dm. Ins.	Dm. Ins.	Dm.	Dm.		$\mathrm{Dm} \text {. }$ Ins.	Dm. Ins.		
2									$1 \cdot 3$	$1 \cdot 4$				
4	-72	$\cdot 9$		14	$1 \cdot 23$	$1 \cdot 3$	1.37	$1 \cdot 4$	$1 \cdot 6$	1.8	$2 \cdot 06$	2		
6		1.03	$\cdot 18$	$1 \cdot 3$	$1 \cdot 4$	$1 \cdot 49$	1.57	$1 \cdot 6$	$1 \cdot 8$	$2 \cdot 06$	2.36	$2 \cdot$	$2 \cdot 81$	2.98
8		$1 \cdot 14$	$1 \cdot 3$	43	1.54	$1 \cdot 64$	$1 \cdot 75$	$1 \cdot 8$	$2 \cdot 0$	2.28	$2 \cdot 6$	$2 \cdot 86$	$3 \cdot 09$	
12		$1 \cdot 3$	$1 \cdot 49$	$1 \cdot 64$	$1 \cdot 27$	1.88	$1 \cdot 98$	$2 \cdot 0$	$2 \cdot 3$		$2 \cdot 98$		354	3.7
16		1143	$1 \cdot 64$	$1 \cdot 81$	$1 \cdot 95$	$2 \cdot 07$	2•18	$2 \cdot 2$	$2 \cdot 61$	2.86	3.28	$3 \cdot 62$	3.90	
20	$3 \cdot$	1*	$1 \cdot 77$	$1 \cdot 95$	$2 \cdot 1$	$2 \cdot 23$	$2 \cdot 35$	$2 \cdot 46$	$2 \cdot 8$	$3 \cdot 1$	3.54		$4 \cdot 20$	
24	4.	d.	11.88	$2 \cdot 07$	2-23	$2 \cdot 37$	$2 \cdot 49$	$2 \cdot 61$	$2 \cdot$	$3 \cdot 2$	$3 \cdot 76$	14		
28		$2 \cdot 33$	$1 \cdot 98$	$2 \cdot 18$	$2 \cdot 35$	$2 \cdot 49$	$2 \cdot 63$	$2 \cdot 75$	$3 \cdot 15$	3.4	3.96	$4 \cdot 36$		
32		2	2.07	$2 \cdot 28$	$12 \cdot 45$	$2 \cdot 61$	$2 \cdot 75$	$2 \cdot 87$	3.29	$3 \cdot 6$	$4 \cdot 14$		4.9	
40		3.33	$2 \cdot 23$	$2 \cdot 46$	$2 \cdot 64$	2.81		3.09	3.54	$3 \cdot 9$	4.46			
48		4°	${ }^{2}$	2.61	$2 \cdot 81$	$2^{\circ} 9$	$3 \cdot 15$ $3 \cdot 31$	3.29	$3 \cdot 76$	$4 \cdot 14$	$4 \cdot 74$	22	$5 \cdot$	5.96
5			$3 \cdot 11$	2.75	$2 \cdot 96$	$3 \cdot 14$	3.31	$3 \cdot 46$	$3 \cdot 96$	4	488	5	5	
64			$3 \cdot 5$	2.87	3.09	$3 \cdot 28$	3.46	${ }^{3 \cdot 62}$	4.14		5.22	$5 \cdot 74$	$6 \cdot 19$	
72 80			4.	$3^{\cdot *}$	$\stackrel{3 \cdot 21}{3 \cdot 33}$	$\left\lvert\, \begin{aligned} & 3.42 \\ & 3.54 \end{aligned}\right.$	$\left\|\begin{array}{c} 3^{\wedge} 60 \\ 3^{\wedge} 73 \end{array}\right\|$	$l_{3 \cdot 9}^{3 \cdot 76}$	$14 \cdot 30$	$\begin{aligned} & 4 \cdot 74 \\ & 4 \cdot 91 \end{aligned}$	$\begin{aligned} & 5^{\circ} 42 \\ & 5 \cdot 6 \end{aligned}$	$5 \cdot 96$	6.43	$6 \cdot 84$
$\begin{aligned} & 80 \\ & 88 \end{aligned}$				$\begin{aligned} & 3.33 \\ & 3.6 \end{aligned}$	$\begin{array}{r} 3.33 \\ 3 \cdot 44 \end{array}$	$\left\|\begin{array}{l} 3 \cdot 54 \\ 3 \cdot 65 \end{array}\right\|$	$\left\|\begin{array}{l} 373 \\ 3 \cdot 85 \end{array}\right\|$	$4 \cdot 02$	${ }_{4}^{4 \cdot 46}$	4.91 $5^{\circ} 07$	$5 \cdot 62$	6.18	6.67	
96				4.	$3 \cdot 54$	$3 \cdot 76$	$3 \cdot 96$	${ }_{4} \cdot 14$	$4 \cdot 74$	$5 \cdot 22$	$5 \cdot 96$	5.58	7.08	
104					3.63	$3 \cdot 86$	$4 \cdot 07$	$4 \cdot 25$	4.87	$5 \cdot 36$	${ }^{6} 14$	6.74	$7 \cdot 27$	
1					3.72	3.96	$4 \cdot 17$	$4 \cdot 36$	$4 \cdot$	5	$6 \cdot 28$	6.92	$1 \cdot 45$	$7 \cdot 92$
12						$4 \cdot 05$		4.46						

Observations on the foregoing Table.
There are two ways in which the bolt may be broken, either by a cross strain, or by detrusion, which is the pulling out the part of the bolt from between the points of support: besides these two ways in which the fastening may be broken, the bolt may crush and cut away the eye of the link which presses upon it.
\ddagger If $w=$ weight or pressure in tons,
$l=$ length of the bolt between the points of support in inches,
$d=$ diameter of the bolt in inches, then $d=(.37 w l)^{\frac{1}{3}}$ to support a cross strain ; but when l becomes less than $\left(\frac{w}{267}\right)^{\frac{2}{2}}$ the bolt will be liable to detrusion, to avoid which, $d=(.08 w)$. But detrusion can never take place when both the bolt and the link are formed of iron, or the same metal, because when l becomes less than $\left(\frac{u^{v}}{71.5}\right)$ the link may be cut by the bolt; to obviate which, the value of d should be $=\frac{w}{24 l}$. This last equation supersedes the first

[^0]when $w=71.5 l^{2}$. This place is marked $*$ in the table.
Remarks on keys, hold-fasts, \&c.
Put $b=$ the breadth in inches,
$d=$ the depth in inches,
$w=$ weight in tons,
$l=$ length of bearing in inches; then the breadth should never be made less than $\frac{w}{24 l}$, and the section $b d^{2}=.37 w l$, or $d=\left(\frac{37 w l}{b}\right)^{\frac{7}{2}}$.

As an example, suppose a bar 1 inch square to support 8 tons was fastened by a key; required the breadth and depth ?
$w=8 .-l=1$ and $\frac{w}{24 l}=\frac{}{24}=\frac{1}{3}=b$ or the breadth required,
$\therefore d=\left(\frac{.37 w l}{b}\right)^{\frac{1}{2}}=\sqrt{8.88}=2.98$ inches, the depth required.
To support the accuracy of this table, a set of experiments was commenced, but the results from them were so unsatisfactory, that they were not continued. But during the proof of three bridges in which bolts of from $1 \frac{1}{4}$ in. to $2 \frac{1}{4} \mathrm{in}$. were used, with various lengths of bearing, and pressures of from 20 to 15 tons, the dimensions marked in the table were found sufficiently strong in every instance; but the diameter of the bolt thus given could not be reduced much, or what was the same thing, the length of bearing could not be decreased with out a risk of failure.
a The best Swedish iron bolts did not sustain a greater pressure (Fbc (han the ordinary Englishbolt iron, (rolled, not hammered.) The Swedish iron when strained in excess bent, and became dented as in the marginal figure: the side a was bulged or rose half as much as b was indented or bent, on the other side ; when the bolts were formed of English bolt iron (unhammered), numerous cracks opened on the convex surface of the bolts at a and $c c$, when the indentation at b amounted to ${ }_{1^{\frac{1}{6}} \text { of the diameter of the bolt ; the bolt failed by these cracks }}$ meeting each other, and the centre part of the bolt was drawn out.

The bars, which these bolts connected, were calculated to sustain 9 tons per square inch of section, and the eyes 7 tons, but when the whole were proved by a tension $\frac{1}{3}$ rd greater than the calculated strength, the eyes broke more frequently than either the bars or bolts.

The following table, for which we are also indebted to Captain J. Thomson, Engineers, will serve as a practical continuation of the observations on roofing, in the last number of the Journal,

[^0]: \ddagger These rules are taken from Tredgold, the arbitrary quantities assumed by him being corrected by a comparison made, and a mean, taken from the best authorities.

